Knockout mice lacking steroidogenic factor 1 are a novel genetic model of hypothalamic obesity.

نویسندگان

  • Gregor Majdic
  • Morag Young
  • Elise Gomez-Sanchez
  • Paul Anderson
  • Lidia S Szczepaniak
  • Robert L Dobbins
  • J Denis McGarry
  • Keith L Parker
چکیده

Knockout (KO) mice lacking steroidogenic factor 1 (SF-1) exhibit a phenotype that includes adrenal and gonadal agenesis, impaired gonadotropin expression, and abnormalities of the ventromedial hypothalamic nucleus (VMH). Studies in rodents with lesions of the ventromedial hypothalamus have implicated the VMH in body weight regulation, suggesting that SF-1 KO mice may provide a genetic model of obesity. To prevent death, SF-1 KO mice were rescued with corticosteroid injections, followed by syngeneic adrenal transplants from wild-type (WT) littermates. Corticosterone and ACTH levels in WT and SF-1 KO mice were indistinguishable, documenting restoration of hypothalamic-pituitary-adrenal function. Although weights at earlier ages did not differ significantly from WT littermates, SF-1 KO mice were significantly heavier by 8 wk of age and eventually weighed almost twice as much as WT controls. Obesity in SF-1 KO mice predominantly resulted from decreased activity rather than increased food intake. Leptin was increased markedly, insulin was modestly elevated, and glucose was indistinguishable from WT mice. Although sex steroids in rodents affect weight, ovariectomy did not abolish the weight difference between WT and SF-1 KO mice. These SF-1 KO mice are a genetic model of late-onset obesity that may help elucidate the role of the VMH in weight regulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steroidogenic factor 1 (SF1) is essential for pituitary gonadotrope function.

Knockout mice lacking the orphan nuclear receptor steroidogenic factor 1 (SF1) exhibit a complex endocrine phenotype that includes adrenal and gonadal agenesis, impaired expression of pituitary gonadotropins, and absence of the ventromedial hypothalamic nucleus (VMH). These multiple defects complicate efforts to delineate primary versus secondary effects of SF1 deficiency in different tissues, ...

متن کامل

Preserved Energy Balance in Mice Lacking FoxO1 in Neurons of Nkx2.1 Lineage Reveals Functional Heterogeneity of FoxO1 Signaling Within the Hypothalamus

Transcription factor forkhead box O1 (FoxO1) regulates energy expenditure (EE), food intake, and hepatic glucose production. These activities have been mapped to specific hypothalamic neuronal populations using cell type-specific knockout experiments in mice. To parse out the integrated output of FoxO1-dependent transcription from different neuronal populations and multiple hypothalamic regions...

متن کامل

Steroidogenic factor 1: a key determinant of endocrine development and function.

A. Overview of steroidogenesis B. SF-1 and the regulation of steroidogenesis C. Cloning and structural characterization of SF-1 1. Structural features of SF-1 2. Multiple transcripts are encoded by the gene encoding SF-1 3. The gene encoding SF-1 is evolutionarily conserved in vertebrates and invertebrates III. Characterization of Sites of SF-1 Expression and Identification of Its Target Genes ...

متن کامل

Steroidogenic factor 1: an essential mediator of endocrine development.

The orphan nuclear receptor steroidogenic factor 1 (SF-1, also called Ad4BP and officially designated NR5A1) has emerged as an essential regulator of endocrine development and function. Initially identified as a tissue-specific transcriptional regulator of the cytochrome P450 steroid hydroxylases, SF-1 has considerably broader roles, as evidenced from studies in knockout mice lacking SF-1. The ...

متن کامل

O-43: Mutations in NR5A1 Associated withOvarian Insufficiency

Background: The genetic causes of nonsyndromic ovarian insufficiency are largely unknown. A nuclear receptor, NR5A1 (also called steroidogenic factor 1), is a key transcriptional regulator of genes involved in the hypothalamic–pituitary–steroidogenic axis. Mutation of NR5A1 causes 46,XY disorders of sex development, with or without adrenal failure, but growing experimental evidence from studies...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Endocrinology

دوره 143 2  شماره 

صفحات  -

تاریخ انتشار 2002